Christopher White

Christopher White

PROFESSOR
Mechanical Engineering
Phone: (603) 862-1495
Office: Mechanical Engineering, Kingsbury Hall Rm W101A, Durham, NH 03824

Prof. White joined the faculty of the Mechanical Engineering Department late in the 2006-2007 academic year. He was a Postdoctoral Research Fellow at Stanford University in the Department of Mechanical Engineering from 2001-2004. Following his post-doctoral work, he joined Sandia National Laboratories as a Senior Member of the Technical Staff in the Combustion Research Facility. His principal duties at Sandia included lead investigator in the Advanced Hydrogen Fueled Engine Laboratory.<br><br>Prof. White teaches ME 646 – Experimental Measurement and Data Analysis and will teach courses in fluid mechanics, heat transfer and experimental methods in engineering.

Courses Taught

  • ME 503: Thermodynamics
  • ME 608: Fluid Dynamics
  • ME 627: Dynamics
  • ME 670: Sys Modeling Simulation&Contrl
  • ME 755: Senior Design Project I
  • ME 910: Turbulence
  • ME 999: Doctoral Research

Education

  • Ph.D., Mechanical Engineering, Yale University
  • M.S., Mechanical Engineering, State University of New York
  • B.S., Mechanical Engineering, State University of New York

Selected Publications

  • Romero, S., Zimmerman, S., Philip, J., White, C., & Klewicki, J. (2022). Properties of the inertial sublayer in adverse pressure-gradient turbulent boundary layers. JOURNAL OF FLUID MECHANICS, 937. doi:10.1017/jfm.2022.6

  • Wengrove, M. E., Ebadi, A., White, C. M., & Foster, D. L. (2020). Evaluation of the momentum integral method to determine the wall skin friction in separated flows. EXPERIMENTS IN FLUIDS, 61(12). doi:10.1007/s00348-020-03065-8

  • Montemuro, B., White, C. M., Klewicki, J. C., & Chini, G. P. (2020). A self-sustaining process theory for uniform momentum zones and internal shear layers in high Reynolds number shear flows. JOURNAL OF FLUID MECHANICS, 901. doi:10.1017/jfm.2020.517

  • Ebadi, A., Bautista, J. C. C., White, C. M., Chini, G., & Klewicki, J. (2020). A heat transfer model of fully developed turbulent channel flow. JOURNAL OF FLUID MECHANICS, 884. doi:10.1017/jfm.2019.1006

  • Ebadi, A., White, C. M., Pond, I., & Dubief, Y. (2019). Mean dynamics and transition to turbulence in oscillatory channel flow. JOURNAL OF FLUID MECHANICS, 880, 864-889. doi:10.1017/jfm.2019.706

  • White, C. M., & Mungal, M. G. (2008). Mechanics and prediction of turbulent drag reduction with polymer additives. ANNUAL REVIEW OF FLUID MECHANICS, 40, 235-256. doi:10.1146/annurev.fluid.40.111406.102156

  • White, C. M., Steeper, R. R., & Lutz, A. E. (2006). The hydrogen-fueled internal combustion engine: a technical review. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 31(10), 1292-1305. doi:10.1016/j.ijhydene.2005.12.001

  • Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S. G., Moin, P., & Lele, S. K. (2004). On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. JOURNAL OF FLUID MECHANICS, 514, 271-280. doi:10.1017/S0022112004000291

  • White, C. M., Somandepalli, V. S. R., & Mungal, M. G. (2004). The turbulence structure of drag-reduced boundary layer flow. EXPERIMENTS IN FLUIDS, 36(1), 62-69. doi:10.1007/s00348-003-0630-0

  • Sreenivasan, K. R., & White, C. M. (2000). The onset of drag reduction by dilute polymer additives, and the maximum drag reduction asymptote. JOURNAL OF FLUID MECHANICS, 409, 149-164. doi:10.1017/S0022112099007818

  • Most Cited Publications